Worksheet for 2021-09-22

Conceptual questions

Question 1. Suppose $f(x, y)$ is a function of two variables with $\nabla f(2,5)=\langle 4,0\rangle$. How many unit vectors \mathbf{u} are there such that $D_{\mathbf{u}} f(2,5)$ is -4 ? What about -3 ? 0 ? 5 ?

Question 2. Suppose $\nabla f(a, b)=0$. In the second derivative test as written on page 961 in the textbook, they say "if $D(a, b)>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum."

Is it significant that we look at $f_{x x}$ rather than $f_{y y}$?

Computations

Problem 1. Consider a point $P=(a, b, c)$ on the surface S defined by $x y z=6$. The tangent plane H at this point meets the coordinate axes at the points $(A, 0,0),(0, B, 0),(0,0, C)$. In other words, A, B, C are the x, y, z-intercepts of H, respectively.
(a) Compute each of A, B, C in terms of a, b, c only.
(b) Show that their product $A B C$ is independent of a, b, c. What is it equal to?

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to conceptual questions

Question 1. To take a "coordinate" approach, let $\mathbf{u}=\langle a, b\rangle$. Then we could write

$$
D_{\mathbf{u}}(2,5)=\langle 4,0\rangle \cdot\langle a, b\rangle=4 a
$$

and we also have the equation $a^{2}+b^{2}=1^{2}=1$ because \mathbf{u} is a unit vector. The system of equations

$$
\begin{aligned}
4 a & =-4 \\
a^{2}+b^{2} & =1
\end{aligned}
$$

has a single solution: $a=-1, b=0$. Replacing the -4 by $-3,0,5$ gives $2,2,0$ solutions, respectively.
Alternatively, we could write

$$
D_{\mathbf{u}}(2,5)=|\nabla f(2,5)||\mathbf{u}| \cos \theta=4 \cos \theta
$$

where θ is the angle between $\nabla f(2,5)$ and \mathbf{u}. Keep in mind, however, that there is one unit vector that would make θ equal to 0 or π, whereas there are two unit vectors that would make θ equal to any value strictly inbetween (so a single solution for θ may correspond to multiple solutions for $\mathbf{u})$.
Question 2. We are assuming that $D(a, b)>0$, which is to say

$$
f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2}>0 .
$$

Rearranging this gives

$$
f_{x x}(a, b) f_{y y}(a, b)>f_{x y}(a, b)^{2} \geq 0
$$

since a square is always nonnegative. Hence the product on the left is strictly positive, and both terms must have the same sign. So requiring that $f_{x x}(a, b)>0$ is equivalent to requiring that $f_{y y}(a, b)>0$.

Note that we are not saying that $f_{x x}$ and $f_{y y}$ are equal; just that they must have the same sign in the case $D>0$.

Answers to computations

Problem 1.

(a) Let $F(x, y, z)=x y z$, so that S is the 6 level set of F. We have $\nabla F(a, b, c)=\langle b c, a c, a b\rangle$, and thus an equation of H is

$$
b c(x-a)+a c(y-b)+a b(z-c)=0
$$

which simplifies to $b c x+a c y+a b z=18$. (Remember, $a b c=6$ because (a, b, c) lies on the surface $S!$ Also, a, b, c are constants, so this is indeed a plane equation.)

As $(A, 0,0)$ is a point on the plane, we must have $b c A=18$, and thus $A=18 / b c$. Similar computations show $B=18 / a c$ and $C=18 / a b$.
(b) The product is

$$
A B C=\frac{18^{3}}{a^{2} b^{2} c^{2}}=\frac{18^{3}}{6^{2}}=162 .
$$

This is independent of the choice of a, b, c, as claimed.
This problem (with arbitrary k in place of 6) was Problem 10 on the Fall 2020 Midterm 1.

